生成公式如下:
(\(y = 0.05 + \sum_{i = 1}^d 0.01 x_i + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 0.01^2).\))
我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。 为了使过拟合的效果更加明显,我们可以将问题的维数增加到$d = 200$, 并使用一个只包含20个样本的小训练集。
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 #数据越简单,模型越复杂,越容易过拟合
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05 #真实数据
train_data = d2l.synthetic_data(true_w, true_b, n_train) #生成测试数据集
train_iter = d2l.load_array(train_data, batch_size) #迭代器
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
# true_w:使用 torch.ones((num_inputs, 1)) 创建一个形状为 (num_inputs, 1) 的张量,其中所有元素初始化为 1,然后乘以 0.01,得到一个形状为 (200, 1) 的张量,代表真实的权重参数。
## 初始化模型参数
def init_params():
w = torch.normal(0, 1, size = (num_inputs, 1), requires_grad = True)
b = torch.zeros(1, requires_grad = True)
return [w, b]
# 定义L2 范数惩罚
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2 #λ会写在外面
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel = 'epochs', ylabel = 'loss', yscale = 'log', xlim = [5, num_epochs], legend = ['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('w的l2范数是:', torch.norm(w).item())
# 忽略正则化,直接实现
train(lambd = 0)
w的l2范数是: 13.327942848205566
# 使用权重衰退
train(lambd = 3)
w的l2范数是: 0.3751027584075928
## 简单实现
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_inputs, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
# 偏置参数没有衰减
trainer = torch.optim.SGD([
{"params":net[0].weight,'weight_decay': wd}, # 区别:把参数放在函数里面
{"params":net[0].bias}], lr=lr)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,
(d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)
w的L2范数: 13.731993675231934
train_concise(3)
w的L2范数: 0.5378920435905457