%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',
'fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
Downloading ../data\hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);
# 使用RGB通道的均值和标准差,以标准化每个通道
normalize = torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
train_augs = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(224),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
normalize])
test_augs = torchvision.transforms.Compose([
torchvision.transforms.Resize([256, 256]),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
normalize])
我们使用在ImageNet数据集上预训练的ResNet-18作为源模型。
在这里,我们指定pretrained=True
以自动下载预训练的模型参数。
pretrained_net = torchvision.models.resnet18(pretrained=True)
pretrained_net.fc
finetune_net = torchvision.models.resnet18(pretrained=True)
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight);
C:\Users\29229\anaconda3\Lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
warnings.warn(
C:\Users\29229\anaconda3\Lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to C:\Users\29229/.cache\torch\hub\checkpoints\resnet18-f37072fd.pth
100%|██████████████████████████████████████████████████████████████████████████████| 44.7M/44.7M [02:57<00:00, 263kB/s]
Parameter containing:
tensor([[ 0.0540, 0.1044, -0.0749, ..., -0.0958, 0.0765, -0.0439],
[-0.0667, 0.0651, 0.0279, ..., 0.0637, 0.1030, -0.0218]],
requires_grad=True)
# 定义微调模型的训练函数
def train_fine_tuning(net, learning_rate, batch_size = 128, num_epochs = 5, param_group = True):
# 从指定目录的 train 子目录加载训练数据,使用 train_augs 进行数据增强
# 利用 torchvision.datasets.ImageFolder 加载图像数据,按照文件夹名自动分类
# 使用 torch.utils.data.DataLoader 创建数据迭代器,设置批量大小为 batch_size,开启数据打乱
train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train'), transform = train_augs),
batch_size = batch_size, shuffle = True)
# 从指定目录的 test 子目录加载测试数据,使用 test_augs 进行数据增强
# 同样创建数据迭代器,不过不进行数据打乱
test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'test'), transform=test_augs),
batch_size=batch_size)
# 调用 d2l 库中的 try_all_gpus 函数,尝试获取所有可用的 GPU 设备
# 如果没有可用 GPU,通常会返回 CPU 设备
devices = d2l.try_all_gpus()
# 定义交叉熵损失函数,reduction="none" 表示不进行损失的聚合,返回每个样本的损失
loss = nn.CrossEntropyLoss(reduction = "none")
# 如果 param_group 为 True,对模型参数进行分组设置不同学习率
if param_group:
# 筛选出除了全连接层(fc)的权重和偏置之外的所有参数
# 使用 net.named_parameters() 获取模型参数及其名称
params_1x = [param for name, param in net.named_parameters()
if name not in ["fc.weight", "fc.bias"]]
# 定义随机梯度下降(SGD)优化器
# 对筛选出的 params_1x 使用学习率 learning_rate
# 对全连接层(fc)的参数使用 10 倍的学习率
# 设置权重衰减为 0.001,防止过拟合
trainer = torch.optim.SGD([{'params':params_1x},
{'params':net.fc.parameters(),
'lr':learning_rate * 10}],
lr = learning_rate, weight_decay = 0.001)
# 如果 param_group 为 False,对所有参数使用相同的学习率
else:
trainer = torch.optim.SGD(net.parameters(), lr = learning_rate, weight_decay = 0.001)
# 调用 d2l 库中的 train_ch13 函数进行模型训练
# 传入模型、训练集和测试集迭代器、损失函数、优化器、训练轮数和设备列表
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
# 调用 train_fine_tuning 函数对 finetune_net 模型进行微调
# 学习率设置为 5e-5,其他参数使用默认值
train_fine_tuning(finetune_net, 5e-5)
# 创建一个预训练的 ResNet-18 模型
scratch_net = torchvision.models.resnet18()
# 修改模型的全连接层(输出层)
# 将输入特征数保持不变,输出特征数改为 2,以适应特定的分类任务
scratch_net.fc = nn.Linear(scratch_net.fc.in_features, 2)
# 调用 train_fine_tuning 函数对 scratch_net 模型进行训练
# 学习率设置为 5e-4,不进行参数分组
train_fine_tuning(scratch_net, 5e-4, param_group=False)