SONG Shengjie

List: 找树左下角的值,路径总和(力扣112/113),从中序分别与后序、前序遍历序列构造二叉树(含力扣105/106)

513.找树左下角的值find-bottom-left-tree-value112. 路径总和path-sum106.从中序与后序遍历序列构造二叉树construct-binary-tree-from-inorder-and-postorder-traversal

513.找树左下角的值find-bottom-left-tree-value

Leetcode

Learning Materials

image

递归法:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def findBottomLeftValue(self, root: Optional[TreeNode]) -> int: 
        self.maxdepth = float('-inf')
        self.result = None
        def getdepth(node, depth):
            if not node.left and not node.right:
                if depth > self.maxdepth:
                    self.maxdepth = depth
                    self.result = node.val #只有判断是叶子,才运行
                return
            if node.left:
                getdepth(node.left, depth + 1)
            if node.right:
                getdepth(node.right, depth + 1)
        getdepth(root, 0)
        return self.result

迭代法:

只需要在层次遍历过程中,记录每一行的第一个节点的值并不断迭代这个值,最后一次循环得到的就是最后一行最左的元素。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def findBottomLeftValue(self, root: Optional[TreeNode]) -> int: 
        if not root:
            return
        que  = deque([root])
        result = 0
        while que:
            size = len(que)
            for i in range(size):
                node = que.popleft()
                if i == 0:
                    result = node.val
                if node.left:
                    que.append(node.left)
                if node.right:
                    que.append(node.right)
        return result

112. 路径总和path-sum

Leetcode

Learning Materials

image

递归法:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
        if not root:
            return False
        return self.traversal(root, targetSum - root.val)  #由于没有对中处理,需要先把根节点去掉

    def traversal(self, node, count) :
        if not node.left and not node.right and count == 0:
            return True
        if not node.left and not node.right and count != 0:
            return False

        if node.left:
            count -= node.left.val
            if self.traversal(node.left, count):
                return True
            count += node.left.val

        if node.right:
            count -= node.right.val
            if self.traversal(node.right, count):
                return True
            count += node.right.val
        
        return False
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
        if not root:
            return False
        if not root.left and not root.right and targetSum == root.val:
            return True 
        return self.hasPathSum(root.left, targetSum - root.val) or self.hasPathSum(root.right, targetSum - root.val)

迭代法

此时栈里一个元素不仅要记录该节点指针,还要记录从头结点到该节点的路径数值总和。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
        if not root:
            return False
         # 此时栈里要放的是pair<节点指针,路径数值>
        st = [(root, root.val)]
        while st:
            node, path_sum = st.pop()
            # 如果该节点是叶子节点了,同时该节点的路径数值等于sum,那么就返回true
            if not node.left and not node.right and path_sum == targetSum:
                return True 
            # 右节点,压进去一个节点的时候,将该节点的路径数值也记录下来
            if node.right:
                st.append((node.right, path_sum + node.right.val))
             # 左节点,压进去一个节点的时候,将该节点的路径数值也记录下来
            if node.left:
                st.append((node.left, path_sum + node.left.val))

        return False

相关题目:

[113.路径之和Ⅱ](https://leetcode.cn/problems/path-sum-ii/description/)

区别在于要找到所有路径。所以递归函数不要返回值.

递归法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
        self.result = []
        self.path = []
        if not root:
            return self.result
        self.path.append(root.val)
        self.traversal(root, targetSum - root.val)
        return self.result
    
    def traversal(self, node, count):
        if not node.left and not node.right and count == 0:
            self.result.append(self.path[:])
            return 
        if not node.left and not node.right:
            return
        
        if node.left:
            self.path.append(node.left.val)
            count -= node.left.val
            self.traversal(node.left, count)
            count += node.left.val
            self.path.pop()

        if node.right:
            self.path.append(node.right.val)
            count -= node.right.val
            self.traversal(node.right, count)
            count += node.right.val
            self.path.pop()
        
        return

迭代法

需要记录下来path的路径,就是多了一个值去记录累加。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
        if not root:
            return []
        st = [(root, [root.val])]
        res = []
        while st:
            node, path = st.pop()
            if not node.left and not node.right and sum(path) == targetSum:
                res.append(path)
            if node.right:
                st.append((node.right, path + [node.right.val]))
            if node.left:
                st.append((node.left, path + [node.left.val]))
        return res

106.从中序与后序遍历序列构造二叉树construct-binary-tree-from-inorder-and-postorder-traversal

Leetcode

Learning Materials

image

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
        #后序数组为空
        if len(postorder) == 0:
            return None
        #后序数组最后一个元素是根节点
        rootvalue = postorder[-1]
        root = TreeNode(rootvalue)
        if len(postorder) == 1: #优化
            return root
        #寻找中序数组位置作为切割点
        for i in range(len(inorder)):
            if inorder[i] == rootvalue:
                index = i
                break
        #切中序数组
        leftin = inorder[:index]
        rightin = inorder[index + 1:]
        #切后序数组
        leftpost = postorder[:len(leftin)]
        rightpost = postorder[len(leftin): - 1]
        #递归处理左右区间
        root.left = self.buildTree(leftin, leftpost)
        root.right = self.buildTree(rightin, rightpost)
        return root

相关题目:

105.从前序与中序遍历序列构造二叉树

思路完全一致,注意切割区间的范围,左闭右开。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        #前序数组为空
        if len(preorder) == 0:
            return None
        #前序数组第一个元素是根节点
        rootvalue = preorder[0]
        root = TreeNode(rootvalue)
        if len(preorder) == 1: #优化
            return root
        #寻找中序数组位置作为切割点
        for i in range(len(inorder)):
            if inorder[i] == rootvalue:
                index = i
                break
        #切中序数组
        leftin = inorder[:index]
        rightin = inorder[index + 1:]
        #切前序数组
        leftpre = preorder[1:len(leftin) + 1]
        rightpre = preorder[len(leftin) + 1:]
        #递归处理左右区间
        root.left = self.buildTree(leftpre, leftin)
        root.right = self.buildTree(rightpre, rightin)
        return root